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Abstract. We investigate the behaviour of the relic density for a heavy dark matter model
with a dimension-five operator added to the theory. The model features a top-philic dark matter
candidate and heavy fermionic mediator which interact via a Yukawa-type term, and which in
mass-degenerate set-ups results in coannihilation effects on the relic density. We present a semi-
analytical fit to the relic density, modelling the interplay between the dimension-five contact
term and Yukawa-type contribution, and showing that coannihilation effects should not be
neglected in a naive fit. Additionally, we motivate the use of a semi-analytic fit in place of
computer-intensive simulations, showing that the functional form is able to predict parameters
producing the correct relic density.

1. Introduction
The dark matter puzzle is one of the foremost questions in particle physics today, and one
which forms a significant part of many experimental programs. It has been well established that
about 25 % of the energy in the universe is taken up by dark matter [1], so-named for its non-
interaction with light [2], but its nature remains unknown. If it is a particle, it does not form part
of the Standard Model (SM). Physics programmes designed to detect it include astrophysical
attempts using indirect and direct detection, and experiments at colliders such as the Large
Hadron Collider at CERN. None of these efforts have yet yielded conclusive discoveries.

In the following, we investigate the phenomenology of a heavy scalar dark matter candidate
S which is top-philic and couples to the SM via a heavy fermionic mediator, T , via a t-channel
interaction. The new physics states S and T are both odd under a Z2 symmetry, and the masses
of both resonances are constrained to lie in the range 200 GeV ≤ mS , mT ≤ 3 TeV. The upper
limit is chosen to match the scale of a generic composite Higgs theory, which is expected to be
several TeV. We build upon a previous model studied in Refs. [3, 4], where it was shown that
the next-to-leading-order (NLO) contributions to the annihilation cross section should not be
neglected for heavy dark matter. Furthermore, it is a goal of this work to postulate that S and T
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arise as bound states in a composite Higgs model featuring underlying fermions, and to support
this we enforce that their masses lie within one order of magnitude. To further investigate this
avenue, we follow an effective theory approach and add to the existing model [3, 4] an additional
contact interaction SStt with an unknown O(1) coefficient. Such a dimension-five term is a
generic feature of a broad range of Beyond the Standard Model theories, including composite
Higgs models, arising from strong dynamics. Following Refs. [3, 4], we add to the SM the
minimal Lagrangian

L = iT̄D/T −mT T̄ T +
1

2
∂µS∂

µS − 1

2
m2
SS

2 +
[
ỹtST̄PRt+ h.c.

]
+
C

Λ
SStt̄, (1)

where mT is the mass of the mediator and mS is the mass of the dark matter candidate. The
dark matter interaction with the SM sector is achieved through the Yukawa-type operator with
coefficient ỹt and the dimension-five term with coefficient C/Λ. The parameter Λ indicates
the energy scale of the effective theory, such as the range of validity of compositeness. When
the masses of S and T are near to the compositeness scale, the validity of the EFT should be
treated with care. However, colliders such as the LHC probe scales of 1 TeV or less in typical
dark matter searches, implying these predictions may be safely trusted there.

A dark matter candidate S in the presence of mediator T with a small mass splitting between
the two leads to coannihilations becoming important in the calculation of the relic density. In this
case, the relic abundance of dark matter is not only controlled by the process σ(SS → SM SM),
but also by σ(ST → SM SM). The rate of annihilation of dark matter may then also be indirectly
impacted by annihilations of the mediator, σ(TT → SM SM).

The thermally averaged cross section 〈σv〉 may be non-relativistically expanded as

〈σv〉 ≈ a+ b〈v2〉+O(v4), (2)

with v the relative velocity between the two scattering dark matter candidates. The annihilation
rate features contributions from partial waves of the scattering amplitude, where the term a on
the right hand side of equation (2) corresponds to the velocity-independent s-wave term, and the
second represents the p-wave contribution, and scales with v2. In simple dark matter models,
the s-wave contribution to the annihilation cross section dominates, and higher partial waves
are minimal [5].

In a phenomenon dubbed the WIMP miracle, a weak-scale particle generically undergoes
thermal freeze-out within a few orders of magnitude of the correct cross section, making the
measured relic density ΩDMh

2 = 0.1186 ± 0.0020 [6] easily achievable. In the case without
coannihilations, the relic density of S, ΩDMh

2 [7], is the solution to the Boltzmann equation [7]

dn

dt
= −3Hn− 〈σeffv〉

(
n2 − n2

eq

)
, ΩDMh

2 ≈ 1.04× 109

MPl
√ xF

g∗(xF )

1

a+ 3b/xF
(3)

where H is the Hubble constant, the number density of S is given by n, the equilibrium number
density is indicated by neq, MPl is the Planck mass, g∗ the number of effectively massless
degrees of freedom, and x = mS/Tx, with Tx the freeze-out temperature. In the case at hand,
the NLO annihilation cross section for SS annihilation is a sum of tree level and virtual internal
bremsstrahlung contributions1 [4]

σvNLO ≈ σvqq̄ + σv
(0)
V IB, with 〈σv〉 = σvNLO + σvSStt. (4)

1 For the full expression of the NLO cross section, the interested reader is referred to Ref. [4], and for the
dimension-five cross section to Ref. [8].
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Figure 1. Relevant Feynman diagrams for the annihilation and co-annihilation (with T ) of S.

From equation (3), we use that ΩDMh
2 ∼ 1/〈σv〉 [9], solving for C/Λ yields

C

Λ
= f(mS ,mT , ỹT ) ≈ 1√

A(mS)

√
b′(xF , g∗(xF ))−B(mS ,mT ) ỹt

4, (5)

with2

A(mS) =
Λ2〈σv〉SStt

C2

Nc

4π

(
= 1− mt

2

m2
S

)3/2
σvqq̄ + σv

(0)
V IB

ỹ4
t

,

b′(xF , g∗(xF )) =
(
7.2× 10−10 GeV−2

)
g∗(xF )

, B(mS ,mT ) =

√ xF
,

(6)

where mt is the mass of the top quark, and b′(xF , g∗(xF )) is fitted from the numerical result.
Here, A(mS) and B(mS ,mT ) are obtained by factorising the coefficients from each of the relevant
cross sections, so as to use those coefficients as variables for the fit.

2. Considering coannihilations
The canonical calculation of dark matter relic density must, however, be modified when
coannihilations with another relatively mass-degenerate state are possible. This is highlighted
in figure 1, where diagrams (a) through (e) illustrate the SS annihilation channels, diagram (f)
presents an example coannihilation channel. In the following, we present the steps for including
such features in the calculation of the relic density, before presenting the fit.

Consider the case at hand, where mS < mT . The abundance of S is determined by a set of
Boltzmann equations [10]

dn

dt
= −3Hn− 〈σijv〉(n2 − n2

eq), (7)

which is of the same form as the Boltzmann equation for the single particle annihilation. It
can then be solved by the same techniques, through performing the annihilation integral after
solving for the freeze out temperature. More detail on this process is available in Ref. [10]. In
that case, the additional state (here, the mediator T ), can effect the annihilation cross section.
In the general case, the effective thermally averaged cross section due to coannihilations is given
by [10]

σeff (x) =

N∑
ij

σij
gigj
g2
eff

(1 + ri)
3/2(1 + rj)

3/2exp(−x(ri + rj)),

geff (x) =
N∑
i=1

gi(1 + ri)
3/2exp(−x ri), with ri =

mi

mS
− 1,

(8)

2 For the full expression of B(mS ,mT ) and further details of the calculation, the interested reader is referred to
Ref. [8].
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Figure 2. The shift due to coannihilations for mS = 829 GeV, with mass ratios r = 0.26, r =
0.42, r = 0.86, and r = 1.01 for plots (a− d). All points yield the correct relic density.

recalling that x = mS/Tx. Here, σij ≡ σ(χiχj → SM) for states χi with gi internal degrees of
freedom. In this case, with only two states S = χi and T = χj relevant, the effective annihilation
cross section simplifies to

σeff (x) = σSS + σST
gSgT
g2
eff

(
mT

mS

)3/2

exp
(
− x r

)
, (9)

where σST ∝ ỹt
2. The form of equation (9) displays an exponential dependence attached to the

coannihilation-induced cross section. That is, for smaller values of r, we expect to observe a
larger modification to σSS (where x > 0 always). We now move to examining the semi-analytical
fit to the relic density, bearing these contributions in mind.

3. Semi-analytical fit
The dark matter relic density is simulated using the micrOMEGAS [11] framework, which
allows the user full control of the cross section and numerical calculation of the relic abundance,
and includes all relevant annihilation and coannihilation channels. The CalcHEP [12] model
file was generated using the FeynRules [13, 14]/CalcHEP interface [13]. In this work, we
have improved the estimation of 〈σv〉 by including the NLO form of the cross section within
the framework. The free parameters of the scan are varied with masses mS (mT ) ∈ [200 −
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3000(3500)] GeV, ỹt ∈ [10−4, 6], and C/Λ ∈ [10−3, 10−5] GeV−1. The masses are chosen to lie
above the top mass (avoiding threshold effects) and roughly below the envisioned compositeness
scale, which typically lies around 3 TeV. The justification for the Yukawa parameter bounds is
borrowed from previous investigations [3], where the upper limit is the limit of the perturbative
regime, and the lower limit ensures that MicrOmegas correctly handles co-annihilation effects.
Finally, to establish the bounds for the contact term coefficient, the values of C/Λ which take
over from the Yukawa term (ỹt ∼ 0) in producing the correct relic density were established, as
well as the largest value of C/Λ which does not modify the relic density due to the Yukawa term.

In studying the modification of the relic density behaviour for a benchmark at hand, we study
the behaviour in the ỹt−−C/Λ plane, using as benchmark data the numerical predictions from
the relic density simulations. In particular, as shown in figure 2 for mS = 829 GeV, we observe
that as expected the smaller r = mT /mS − 1 values deviate from the simple fit of equation (5).
The fit has been further detailed in Ref. [8], so here we will simply quote the result. The shift
relevant to a mass point (mS ,mT ) which influences the Yukawa-type parameter is found to
follow

s(mS ,mT ) =

{
0.4kr mS ≤ 1.2 TeV

0.7kr mS > 1.2 TeV
, (10)

where k(mS) is an unconstrained dimensionless parameter. The change in behaviour at roughly
1 TeV is motivated by the appearance of NLO effects at that energe regime, which is independant
of the value of Λ chosen. The value for k(mS) may be found via a fit to an exponential function

k(mS) =

{
(1.9× 10−4)

(
6.2× 108

)mS/Λ mS ≤ 1.2 TeV
, (11)

(3.0× 10−3)(1.8× 104)mS/Λ mS > 1.2 TeV

for Λ = 3.5 TeV, which yields the semi-analytic fit result

C

Λ
≈ f(mS ,mT , ỹt) =

1√
A(mS)

√
b′ −B(mS ,mT )

(
ỹt − α

[
βγ

m

Λ
S
]r)4

. (12)

The coefficient b′(xF , g∗(xF )) is determined by the fit as b′ = 6.0× 10−9± 0.2× 10−9 GeV−2.
Additionally, we find the remaining coefficients parametrising the fit to be (α, β, γ) = (0.4, 1.9×
10−4, 6.2× 108) for mS ≤ 1.2 TeV, and (α, β, γ) = (0.7, 3.0× 10−3, 1.8× 104) for mS > 1.2 TeV.
In particular, the parameter γ has been raised to a dimensionless ratio, where Λ = 3.5 TeV is
the maximum value for mT used in the scan. As mentioned above, Λ provides an indicative
effective scale, such as the limit of validity of the theory or the scale of compositeness.

4. Applying the shift
The fit to the relic density was performed to motivate its use over time-consuming and CPU-
heavy simulations. The function obtained in equation (12) offers an alternative to performing a
simulation of the relic density in this context, where the user may instead obtain the values of
the ỹt and C/Λ parameters which yield the correct relic density for a given benchmark. In order
to further motivate this, we apply the functional form (without fitting) to data points to check
the agreement. As displayed in figure 3, the functional form closely matches the behaviour of
the data, motivating the use of the fit in place of simulation.

In particular, we note good agreement at the ‘boundaries’ of the parameter space; for large
ỹt and small C/Λ (and vice versa) the functional form matches the data well. We observe
slight deviation from data in the regions where the interplay between the variables is strongest,
particularly for larger mS . This behaviour may be expected generally for t-channel dark matter
theories which feature coannihilations due to small mass gaps.
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Figure 3. A number of benchmarks with a common mass ratio, r = 0.72 are presented, where
the shift due to coannihilations is included. All points achieve the correct relic density.

5. Conclusion
This work has demonstrated that the relic density for a simple dark matter model may be
modelled through a simple semi-analytical fit, which takes into account coannihilation effects.
Additionally, we have motivated the possibility that a functional fit of this nature could
conceivably take over from an intensive computer simulation, and may be used to access the
parameters yielding the correct relic density for additional benchmarks or mass splittings.

Acknowledgements
ASC is supported in part by the National Research Foundation of South Africa. LM is supported
by the UJ GES 4IR initiative.

References
[1] Silk J et al. 2010 Particle Dark Matter: Observations, Models and Searches (Cambridge: Cambridge Univ.

Press)
[2] Adam R et al. (Planck) 2016 Astron. Astrophys. 594 A1 (Preprint 1502.01582)
[3] Colucci S, Fuks B, Giacchino F, Lopez Honorez L, Tytgat M H G and Vandecasteele J 2018 Phys. Rev. D98

035002 (Preprint 1804.05068)
[4] Colucci S, Giacchino F, Tytgat M H and Vandecasteele J 2018 Phys. Rev. D 98 115029 (Preprint 1805.10173)
[5] Das A and Dasgupta B 2017 Phys. Rev. Lett. 118 251101 (Preprint 1611.04606)
[6] Aghanim N et al. (Planck) 2020 Astron. Astrophys. 641 A6 (Preprint 1807.06209)
[7] Kong K and Matchev K T 2006 JHEP 01 038 (Preprint hep-ph/0509119)
[8] Cornell A S, Deandrea A, Flacke T, Fuks B and Mason L 2021 JHEP 07 026 (Preprint 2104.12795)
[9] Lisanti M 2016 Lectures on Dark Matter Physics Theoretical Advanced Study Institute in Elementary Particle

Physics: New Frontiers in Fields and Strings (Preprint 1603.03797)
[10] Griest K and Seckel D 1991 Phys. Rev. D 43 3191–3203
[11] Bélanger G, Boudjema F, Goudelis A, Pukhov A and Zaldivar B 2018 Comput. Phys. Commun. 231 173–186

(Preprint 1801.03509)
[12] Belyaev A, Christensen N D and Pukhov A 2013 Comput. Phys. Commun. 184 1729–1769 (Preprint

1207.6082)
[13] Alloul A, Christensen N D, Degrande C, Duhr C and Fuks B 2014 Comput. Phys. Commun. 185 2250–2300

(Preprint 1310.1921)
[14] Christensen N D, de Aquino P, Degrande C, Duhr C, Fuks B, Herquet M, Maltoni F and Schumann S 2011

Eur. Phys. J. C 71 1541 (Preprint 0906.2474)

Page: 609

SAIP2021 Proceedings 

SA Institute of Physics ISBN: 978-0-620-97693-0 Page: 604




